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The Environmental Monitoring and Assessment Program (EMAP) of the U.S. Environ-
mental Protection Agency has conducted several probability surveys of aquatic resources.
Such surveys usually have unequal probability of including population elements in the sam-
ple. The Northeast lakes survey, which motivated this study of variance estimation, was such
a survey. We examine ten estimators for the finite population variance using a Monte Carlo
factorial experiment that considers three population characteristics. The results show that
the correlation between the inclusion probabilities and the response is the most important
factor that differentiates the estimators. Under conditions of low correlation (approximately
< 0.4), a common feature in environmental surveys, the sample variance is best, elsewhere,
two ratio estimators, one based on consistency and the Horvitz-Thompson Theorem (HT)
and the other based on the Yates-Grundy form, behave similarly and best.

Key Words: Finite population sampling; Horvitz-Thompson estimation; Unequal proba-
bility sampling.

1. INTRODUCTION

Objectives of a survey sometimes include estimating a finite population variance. For
instance, Thompson (1992, p. 33) described a method for sample size determination which
requires an estimate of the population variance. This estimate ideally comes from a pi-
lot survey. The U.S. Environmental Protection Agency’s Environmental Monitoring and
Assessment Program-Surface Waters Northeast Lakes Pilot study (EMAP-lakes) has this
characteristic (Larsen and Christie 1993), as it aims to gain population insight toward plan-
ning future sampling strategies. Toward this goal, in addition to others, the data from that
pilot project will be used to estimate population variances (Larsen, Thorton, Urquhart,
and Paulsen 1995; Urquhart, Paulsen, and Larsen 1998). In other situations the population
variance may be a parameter of interest in its own right. For example, in ecological applica-
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tions a small population variance indicates a uniform population. Sound estimators of the
population variance will prove useful.

The sample variance is regarded as the estimator of choice in the case of simple random
sampling (Cochran 1977; Thompson 1992); however, the EMAP-lakes pilot project uses a
complex sample design to select a sample of lakes (Larsen et al. 1995). A complex sample
design assigns unequal inclusion probabilities to population elements.

Sampling with unequal inclusion probabilities is common in multipurpose environmen-
tal surveys. The U.S. Environmental Protection Agency’s National Stream Survey (NSS)
(Stehman and Overton 1994a), the multipurpose monitoring plan for the California Bight
(Stevens 1994), and the EMAP-lakes pilot project (Larsen and Christie 1993) all use com-
plex designs that arise because of multiple survey objectives and practical constraints. For
a complex design the sample variance is not design unbiased. How should we estimate a
finite population variance with a complex design?

Särndal, Swensson, and Wretman (1992, sec. 5.9) suggested three estimators for this
case but did little to compare them stating, simply, that the estimators should not behave
differently. The first, however, is a ratio estimator but the other two are not. Stehman
and Overton (1994b) recommended a ratio estimator as well. Other than consistency, they
provided no properties either. Liu and Thompson (1983) proved that an estimator based
on the Yates-Grundy form is admissible among unbiased estimators and that a “general-
ized” Horvitz-Thompson estimator is inadmissible. Taken together, these recommendations
provide only unsubstantiated suggestions, not a solution to the problem of which estima-
tor should be used. Our sampling literature lacks a Monte Carlo study of this estimation
problem (Royall and Cumberland 1981; Stehman and Overton 1994a), which can provide
pragmatic answers for situations where more than one estimator exists but an analytical
comparison proves difficult, if not intractable.

We examine ten different estimators for the finite population variance. The first three
are nonratio forms of the estimators suggested by the literature above, the next six are the
ratio forms of these estimators, and the last is a naive estimator: the sample variance.

The sample variance interests us because of its simplicity and how likely it is to be
used. For this estimator, we ask: “When is it applicable?” and “What can go wrong if it is
naively calculated from a sample collected with a complex design?” As for the rest of the
estimators, we ask “Which of the ten estimators performs better than the others and under
what population and sample design conditions?”

Our results rely on a simulation study based on both real and artificial populations. The
real populations cover a range of possible populations practitioners might encounter. The
artificial populations, on the other hand, provide control over simulation parameters. We
use a population space approach by varying simulation parameters in a factorial structure to
make inference to an encompassed set of possible parameters (Stehman and Overton 1994a),
varying three parameters: the correlation between response and inclusion probabilities; the
variance of the inclusion probabilities; and the sample size. If a practitioner can place their
population and sample design into one of our categories and choose an estimator based on
our results, then we have succeeded. In other cases, practitioners should perform similar
simulations.
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We restrict our comparisons to probability-proportional-to-size designs that have a
simple method of sample selection. Although thus restricted, our results should provide
guidance in many other situations.

Section 2 introduces the notation and derives the estimators and their characteristics.
Section 3 describes the empirical experiment we use to compare the ten estimators. Section
4 presents the results of the experiment: The sample variance is extremely resistant to the
design and hence can be used under general conditions; in other cases, a ratio form of the
HT estimator performs best. Section 5 discusses the importance of these results.

2. THE ESTIMATORS

Let U be the universe of 1 < N < ∞ elements and yi be a response variable that is
measurable without error on every unit i ∈ U . A sample design, p(S), assigns a probability
of selection to every possible sample, S ⊆ U , and thus first-order inclusion probabilities to
each unit i ∈ U , πi, and second-order inclusion probabilities to all pairs of units i, j ∈ U ,
πij . Finally, define Zi as the sample membership indicator for element i, Zi = 1 if i ∈ S

and Zi = 0 if i /∈ S.
The population variance can be represented in three ways, each of which motivates a

set of three estimators. The first form provides basis for method of moment estimators,

σ2 =
1

N − 1

N∑
i=1

(yi − y)2 ;

the second demonstrates that the variance is the sum of two “averages,” the average of
the squared responses and the square of the average, and leads to the Horvitz-Thompson
estimators

σ2 =
1

N − 1

N∑
i=1

y2
i −

N

N − 1
y2; (2.1)

and the third form is due to Yates and Grundy (1953), who derived a similar form for the
variance of the HT estimator of the population total

σ2 =
1

2N(N − 1)

N∑
i=1

N∑
j=1

(yi − yj)2.

2.1 THE DESIGN-BASED ESTIMATORS

The Horvitz-Thompson theorem and a quadratic form of it (Corollary 1) suggest three
design-based estimators. The first is an unbiased method-of-moment (MOM) estimator,

S2
Π =

1
N − 1

(
N∑

i=1

y2
i

Zi

πi
− 1

N

N∑
i=1

N∑
i=1

yiyj
ZiZj

πij

)
.
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Table 1. Descriptive Properties of the Estimators

y-invariance

Estimator Unbiased Scale Location ≥ 0

s 2 No Yes Yes Yes

S 2
Π Yes Yes Noa No

Ŝ
2
Π No Yes Noa ?

S̃
2
Π No Yes Noa No

S 2
π No Yes No No

Ŝ
2
π No Yes Yes Yes

S̃
2
π No Yes No No

S 2
∗ Yes Yes Yes Yes

Ŝ
2
∗ No Yes Yes Yes

S̃
2
∗ No Yes Yes Yes

NOTE: a These estimators are y-location invariant in ex-
pected value, see Section 2.

This estimator is y-scale invariant (Table 1), but is location invariant only in expected value,
for any constant c,

S2
Π(y + c) = S2

Π(y) +
2c

N − 1

⎛⎝ N∑
i=1

yiZi

πi
− 1

N

N∑
i=1

N∑
j=1

yiZiZj

πij

⎞⎠
+

c2

N − 1

⎛⎝ N∑
i=1

Zi

πi
− 1

N

N∑
i=1

N∑
j=1

ZiZj

πij

⎞⎠ .

The two additional terms on the right-hand side compare the traditional Horvitz-Thompson
estimator with a generalized Horvitz-Thompson estimator (Corollary 1) of the population
total and size, respectively. Both terms have expectation zero. This estimator can assume
negative values.

The next design-based estimator stems from the bilinear form of the variance (2.1). Use
of the Horvitz-Thompson estimators,

∑N
i=1 y2

i Zi/πi and (
∑N

i=1 yi Zi/πi)2, to estimate the
two sums results in the HT estimator

S2
π =

1
N − 1

⎛⎝ N∑
i=1

y2
i

Zi

πi
− 1

N

N∑
i=1

N∑
j=1

yiyj
ZiZj

πiπj

⎞⎠ . (2.2)

This estimator is biased, not y-location invariant, and can assume negative values (Table 1).
However, the bias of this estimator is likely to be small,

E(S2
π) = σ2 − 1

N

⎛⎝ N∑
i=1

N∑
j=1

yiyj −
N∑

i=1

N∑
j=1

yiyj
πij

πiπj

⎞⎠ .



240 J.-Y. P. COURBOIS AND N. S. URQUHART

Finally, the “batch” approach to HT estimation, Corollary 2, and the third form of the
population variance suggest the unbiased YG (Yates-Grundy) estimator

S2
∗ =

1
2N(N − 1)

N∑
i=1

N∑
j=1

ZiZj (yi − yj)2

πij
.

This estimator is unbiased, location and scale invariant, and strictly positive (Table 1). Liu
and Thompson (1983) found this estimator to be admissible in the set of unbiased estimators.

2.2 RATIO FORMS OF THE DESIGN-BASED ESTIMATORS

The survey sampling literature suggests that, when estimating a population mean under
a complex design, the HT estimator of the population size should be used in the denominator
in place of the actual population size (Särndal et al. 1992; Thompson 1992), that is, one
should estimate N with N̂ =

∑N
i Zi/πi. Our estimators that have N̂(N̂ − 1) in their

denominator are denoted with a hat such as Ŝ2
Π and abbreviated with a “-R”, indicating a

“ratio” estimator, such as the MOM-R estimator. However an alternative estimator of N 2

is Ñ 2 =
∑∑N

i,j=1 ZiZj/πij . The estimators that have Ñ 2 − N̂ are denoted with a tilde
and abbreviated with a “-GR”, generalized ratio estimator.

The ratio forms of the estimators do not share the same properties as their unweighted
forms (Table 1). Note that estimating population size is often necessary in environmen-
tal sampling when N is unknown, frequently because the sampling frame is imperfect, a
phenomenon experienced in the EMAP survey of Northeast lakes.

2.3 SECOND-ORDER INCLUSION PROBABILITY APPROXIMATIONS

The MOM, YG, and all the GR-estimators require second-order inclusion probabilities.
Because the exact computation of second-order inclusion probabilities is cumbersome under
the design described earlier (Hidiriglou and Gray 1980), we use an approximation suggested
by Stehman and Overton (1989): πij = (n−1)πiπj

2n−πi−πj
, with πi substituted for πii. We also

investigated the approximation suggested by Hartley and Rao (1962) and found it made no
difference in our variance estimates.

2.4 ANALYTICAL COMPARISONS OF THE DESIGN-BASED ESTIMATORS

The HT-based estimators estimate the two parts of the variance in different ways:

S2
π ∝

∑N
i=1 y2

i
Zi

πi
− 1

N

∑N
i=1

∑N
j=1 yiyj

ZiZj

πiπj
,

S2
Π ∝

∑N
i=1 y2

i
Zi

πi
− 1

N

∑N
i=1

∑N
j=1 yiyj

ZiZj

πij
,

S2
∗ ∝

∑N
i=1 y2

i

∑N
j=1

ZiZj

πij
− 1

N

∑N
i=1

∑N
j=1 yiyj

ZiZj

πij
.

(2.3)

Each estimator either uses the HT estimator or the estimator suggested by Corollary 2 for
a part of the variance. The HT estimator, S2

π, uses only the HT theorem, the YG estimator,
only Corollary 2, and the MOM estimator, S2

Π, a mixture of the two.
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Examination of the estimators reveals that if we consider the HT Theorem as a basis
for finite population estimation, the MOM estimator is the most “natural.” It estimates the
first average with the HT estimator and the second average with the batch estimator.

2.5 A NAIVE ESTIMATOR

For reasons previously noted, we are interested in the consequences of using the un-
weighted sample variance to estimate σ2 under complex designs. We call this the “naive”
estimator because it ignores the sampling probabilities: s2 =

∑n
i (yi− y)2/(n− 1), where

y is the sample mean.
The naive estimator has many good properties (Table 1), although it is biased:

E
(
s2 − σ2

)
=

1
n

N∑
i=1

y2
i

(
πi − n

N

)
− 1

n(n− 1)

N∑
j=1

N∑
j �=i

yiyj

(
πij − n(n− 1)

N(N − 1)

)
.

(2.4)
This bias decreases as the variance of the πi in the population decreases. Also, because the
terms πi− n/N and πij − n(n− 1)/N(N − 1) each sum to zero, the bias decreases when
the y and π are uncorrelated. These two criteria form the basis of our simulations.

3. THE SIMULATION EXPERIMENTS

Our simulation experiments address two questions: (1) Under what conditions does the
sample variance perform well? and (2) Which of the estimators outperform the others and
under what conditions? The simulations use both real and artificial populations. The real
populations come from two social and two environmental surveys. We created the artificial
populations by varying three population parameters that describe the joint distribution of
the inclusion probabilities and the response.

For each simulation, we selected 10,000 samples and for each sample calculated
the value of the variance estimators. All simulations were programmed and run in SAS-
AML(TM); copies of code are available from the first author.

Samples were selected by constructing a line whereon each universe element is repre-
sented by a line segment whose length equals the element’s inclusion probability in random
order. After a random start, a systematic sample was selected by taking equal sized steps
along the line and including in the sample every element on whose line segment a step lands
(Stevens 1994).

3.1 THE REAL POPULATIONS

Seventeen datasets from four surveys serve as the real populations (Table 2). The United
States Department of Health and Human Service’s 1995 National Nursing-Home Survey
(NNHS) provides the first universe, a sample of 1,368 nursing homes. The response is the
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Table 2. The Real Populations. Under source, NNHS refers to the National Nursing Home Survey, SSW
refers to the Swedish municipality population, NSS refers to the National Stream Survey, and
EMAP refers to the EMAP-lakes pilot survey (Section 3.1). ANC stands for Acid neutralizing
capacity for both the streams and the lakes. The parameter γ measures the distance a sample
design is from simple random sampling (Section 3.2).

Source x y cv (x) γ ρ N

1 NNHS inverse sample weight # of employees 0.70 0.02 0.83 1368
2 SSW 1975 population # of employees, 1984 1.83 0.22 0.97 284
3 SSW ” # of seats in council 1.83 0.22 0.68 ”
4 NSS watershed area ANC 1.38 0.06 −0.15 1630
5 NSS ” stream depth 1.38 0.06 0.17 ”
6 EMAP watershed area ANC 5.30 0.57 0.13 490
7 ” sqrt. watershed area ” 1.64 0.24 0.13 ”
8 ” log. watershed area ” 0.33 0.01 0.04 ”
9 ” lake area ” 2.65 0.48 −0.06 ”

10 ” sqrt. lake area ” 1.09 0.13 −0.09 ”
11 ” log. lake area ” 0.49 0.03 −0.11 ”
12 ” watershed area Secci depth 5.08 0.57 −0.04 434
13 ” sqrt. watershed area ” 1.61 0.26 −0.04 ”
14 ” log. watershed area ” 0.33 0.01 −0.03 ”
15 ” lake area ” 2.50 0.48 0.11 ”
16 ” sqrt. lake area ” 1.05 0.14 0.19 ”
17 ” log. lake area ” 0.47 0.03 0.22 ”

number of employees and the auxiliary variable is the inverse of the sample weight (Table
2 and Figure 1).

Särndal et al. (1992) supplied the second universe: data from the 284 municipalities
of Sweden. The number of municipal employees in 1984 and the total number of seats on
the municipal council serve as the responses, while for both of these the 1975 municipality
population is the auxiliary variable (Table 2 and Figure 1) .

USEPA’s national stream survey (NSS) (Mitch et al. 1990) provides a fourth and a fifth
population on a universe of 1,630 stream traces (Table 2 and Figure 1). The responses are
the acid neutralizing capacity (ANC) and the stream depth. The auxiliary variable is the
watershed area.

The final eleven populations come from the EMAP-lakes pilot project (Larsen and
Christie 1993). From this dataset, we take two responses, ANC and Secci depth (Secci
depth is a measure of the transmission of visible light into a body of water), and construct
six different auxiliary variables from lake characteristics: the lake’s watershed area, the lake
area, and each of these after the square-root and natural logarithm transformations (Table 2
and Figure 2).

3.2 THE ARTIFICIAL POPULATIONS

Section 2.5 demonstrated that two factors affect the magnitude of the bias of the naive
estimator (Equation (2.4)); first, the estimator’s bias depends on the correlation between
the response and the inclusion probabilities, and second by how “far” the design is from
simple random sampling. These parameters serve as the bases for our experiment. We build
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Figure 1. The auxiliary variable and response for real populations 1, 2, 3, 4 (Table 2 and Section 3.1).

populations with correlations that range from −0.95 to 0.95. In the EMAP-lakes data,
the relationships between the chemical responses and the measurements of lake size have
correlations from −0.30 to 0.27, (Figure 2). The variance of the inclusion probabilities,
σ2

π =
∑N

i=1(πi − π)2/(N − 1), measures the distance the design is from simple random
sampling (McDonald 1996). This variance is constrained by the inequality

0 ≤ σ2
π ≤

n(N − n)
N(N − 1)

. (3.1)

When σ2
π = 0 the design is simple random sampling; however, as σ2

π → n(N−n)
N(N−1) the design

degenerates to one that assigns probability 1 to the n units with the largest auxiliary variable
values and 0 to all other units. Our simulations use four levels of the ratio, γ = σ2

π/ n(N−n)
N(N−1) ,

(0.1, 0.2, 0.3, and 0.4), a range which covers practical applications.
For each of these 68 simulations, 17 levels of correlation by 4 levels of γ, an auxiliary

variable, xi, i = 1, . . . , N , was a draw from a one parameter gamma distribution. This
distribution describes positively skewed populations such as what is found in nature (e.g.,
lake size). These were standardized to have unit variance. After the xi were generated,
the responses, yi, i = 1, . . . , N , were generated using a linear regression model: yi =
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Figure 2. The auxiliary variable and response for real populations 12–17 (Table 2 and Section 3.1).

ρxi + ui, where −1 ≤ ρ ≤ 1 is the desired correlation (between the π and the y) and
ui are independent and identically distributed normal random variables with mean 0 and
variance 1 − ρ2. As with the auxiliary variable, the response is then standardized to have
unit variance.

We created universes with 1,000 elements and used sample sizes of 50 and 100 elements.
These sizes translate to sample proportions of 0.05 and 0.10. An estimate of the EMAP-lakes
sample proportion is 0.092.

3.3 RESPONSE STRUCTURE FOR SIMULATIONS

The principal performance criteria we evaluated from the simulations are the esti-
mators’ empirical bias and mean square error (MSE). For an arbitrary estimator, S2, the
bias is defined as E

[
S2 − σ2

]
, where the expectation is approximated by the average

of the estimates from the 10,000 simulated samples. The empirical MSE is defined as
E
[(

S2 − σ2
)2
]

= bias2 + var(S2) where var(S2) is approximated by the variance of the
estimates from 10,000 simulated samples. An estimator’s relative MSE (rMSE) with respect
to the naive estimator’s MSE is E

[(
S2 − σ2

)2
]
/E

[(
s2 − σ2

)2
]
.

For the artificial simulations, we simulated on a regular grid in the population space;
then, we interpolated between the grid points creating a surface. We interpolated using the
SPLUS (TM) function interp, which uses a method due to Akima (1978).
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Table 3. The Estimators’ Relative MSE (Section 3.3)

Pop. HT HT-R HT-GR MOM MOM-R MOM-GR YG YG-R YG-GR

1 0.07 0.06 0.06 0.07 0.06 0.06 0.05 0.06 0.06
2 0 0 0 0 0 0 0 0 0
3 7.40 0.04 0.15 7.17 0.07 0.06 0.10 0.04 0.04
4 264.10 4.43 4.76 18.00 8.70 8.40 28.00 4.60 5.60
5 435.80 1.85 7.80 9.20 3.39 2.49 9.90 1.88 2.15
6 4590.50 21.60 125.40 386.60 102.90 89.40 514.30 22.50 40.20
7 7.40 7.00 6.80 10.10 9.40 9.30 12.30 7.40 7.90
8 1.51 1.49 1.49 1.60 1.58 1.58 1.67 1.55 1.56
9 7.70 3.78 3.28 18.30 10.90 10.00 24.30 3.95 5.70
10 2.59 2.50 2.46 3.10 2.96 2.93 3.62 2.60 2.69
11 2.01 1.98 1.97 2.29 2.23 2.21 2.52 2.05 2.09
12 6992.00 1.85 79.00 733.70 12.40 8.10 53.90 1.88 2.86
13 3.57 2.65 2.53 4.70 4.48 4.07 6.10 2.75 2.98
14 1.57 1.62 1.61 1.70 1.76 1.75 2.05 1.67 1.68
15 106.50 12.60 19.70 45.30 31.00 25.50 57.30 13.10 16.10
16 4.01 3.32 3.32 4.34 3.82 3.72 5.30 3.44 3.55
17 2.01 1.62 1.64 1.97 1.73 1.73 2.14 1.68 1.69

4. RESULTS

4.1 RESULTS FROM THE SIMULATIONS ON REAL POPULATIONS

The rMSE for the design-based estimators demonstrated the following general trends

HT-R < HT-GR < HT, MOM-GR≈MOM-R < MOM, and YG-R < YG-GR < YG (Table

3). These trends are dominated by the trend in the estimators’ variances. Across the design-

based estimators the general trend was HT-R ≈ YG-R < MOM-R.

For the two populations with high correlation between the auxiliary variable and the

response (0.83 and 0.97 for populations 1 and 2, Table 2), the design-based estimators

performed better (smaller MSE) than the naive estimator (Table 3). When the correlation was

small (< 0.22, populations 4–17), however, the naive estimator performed better than the

design-based estimators even in the cases of high inclusion probability variance (populations

6 and 12). For population 3, ρ = 0.68, the ratio and generalized ratio estimators performed

better than the naive estimator but the nonratio forms of the HT and MOM estimators did not

except for the YG estimator, which seemed to act more like the ratio estimators (Table 3).

Finally there was some evidence that inclusion probability variance and the correlation

interact. Under extreme inclusion probability variance (Populations 6 and 12, γ = 0.57,

Table 2) the design-based estimators performed their worse for ρ = 0.13 (population 6)

where the smallest rMSE of the lot is 21.64 for the HT-R estimator, but they fared much

better for ρ = −0.04 (population 12), where the rMSE for the HT-R estimator is 1.85.
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Figure 3. Empirical MSE for the naive estimator over the population space. The surface resembles a steep banked
valley that runs along the inclusion probability variance direction and that thins out as γ increases, but only
slightly.

4.2 RESULTS FROM THE SIMULATIONS ON ARTIFICIAL POPULATIONS

All estimators performed better as sample size was increased from 50 to 100 units;
further, they improved at the same rate so that comparison of the estimators was invariant to
sample size. The following discussion applies to both n = 50 and n = 100, but we present
the results from only the n = 50 simulations.

The naive estimator performed well. Its MSE was up to six times smaller than the ratio
estimators’ MSEs when there was little correlation between the auxiliary and the response—
approximately between ±0.4 at low levels of inclusion probability variance and ±0.3 at
high levels of inclusion probability variance (Figures 3 and 4).

The unweighted design-based estimators, because of their large variances, performed
terribly throughout the population space.

The performance of the three ratio estimators, as we saw in the real population simula-
tions, depended on both population parameters. Under low inclusion probability variance,
γ < 0.25, they performed best when the correlation ranged between 0.5 and 0.7; under
high inclusion probability variance (γ > 0.3), on the other hand, they performed best when
the correlation was between 0.3 and 0.5. They broke down when there was large inclusion
probability variance and high correlation. Of these estimators, the HT-R estimator had the
smallest MSE over most of the population space; however, the YG-R estimator’s MSE
was only three to six percent higher (Figure 5). The MOM-R estimator, on the other hand,
performed worse than those two estimators; its MSE was up to eighty percent higher than
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that of the HT-R estimator (Figure 5). It fared worse however, when the correlation between
inclusion probability and response was smallest, the region where we suggested using the
naive estimator anyway (Figure 4), and its MSE was less than the other ratio estimators’
MSE in the region of high correlation and low inclusion probability variance (Figure 5,
lower corners).

The MOM-GR and the YG-GR estimators displayed slightly higher MSE than their
ratio counterparts (Figure 5). The HT-GR estimator performed terribly throughout the pop-
ulation space due to its high variance.

Figure 4. Relative mean square error (rMSE) for the ratio versions of the design-based estimators. The rMSE for
the HT-GR estimator was larger than the rest and could not be displayed at this scale.
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Figure 5. Ratio of empirical MSE for the MOM-R and YG-R estimators to the MSE of the HT-R estimator.

5. CONCLUSIONS

Our simulations suggest that the “naive” sample variance should work well despite
being design biased, except when there is high correlation between the response and the
auxiliary variable. Unfortunately, the sampling literature recommends that to estimate the
population total one should find an auxiliary variable correlated with the response—this
is the original motivation for πpx designs (Cochran 1977, chap. 10). In the surveys that
interest us, however—multipurpose environmental surveys—high correlation is unlikely
to occur for two reasons. First, an attempt to optimize the design for certain responses is
likely to arrive at a poor design for other responses. Second, the inclusion probabilities are
often based on practical or programmatic considerations rather than optimized for a specific
response variable.

For other surveys, however, where πpx designs may be optimized for a particular
response, we recommend using weighted estimators and, in particular, either the HT-R
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estimator or the YG-R estimator. The HT-R estimator has the added benefit that second
order inclusion probabilities do not need to be calculated or approximated for estimation.

A final estimator, not included in this study, warrants mention because of its familiarity
and ease of use. The statistical package SAS allows, in its general linear model procedure
(proc glm;), the use of weighted estimates. It has been suggested that using these weights
is a strategy for including sampling weights. The estimator that results is

S2
w =

1
n− 1

⎛⎝ N∑
i=1

y2
i

Zi

πi
− 1

N̂

N∑
i=1

N∑
j=1

yiyj
ZiZj

πiπj

⎞⎠ .

Notice, this is approximately the HT-R estimator (Equation (2.2)) except for the (n − 1)
divisor outside the sum and the 1

N̂
within the sum. As a result, if we naively plug our sample

and inclusion probabilities into SAS we get a good estimator for the sum of square error but
not the mean square error. The remedy is to use the correct “degrees of freedom,” (N̂ − 1).

There are several caveats to this study; inferences are restricted to the designs we
consider, approximations to the second-order inclusion probabilities, and the particular
populations we examined. Our selection method (Section 3) provides an easy way to select
a πps design that admits second-order inclusion probabilities. Other methods are more
difficult to implement and/or restricted to particular situations (n = 2) (Brewer and Hanif
1983; Cochran 1977). Although we feel that our results should apply in more general
settings, we recommend that anyone who desires a πps design consider using this selection
method. As for the approximations, calculation of the true inclusion probabilities is difficult
so we feel most researchers will use the approximations in the end. Finally, our populations
are simple; if a researcher has a population that does not resemble one considered here they
should replicate this experiment for their situation; the authors are happy to share the code.

APPENDIX: THEOREMS AND PROOFS

This appendix provides the Horvitz-Thompson theorem and two corollaries used to
develop the design-based estimators. Vector based notation allows for convenience in cal-
culations and succinct notation (Dol, Steerneman, and Wansbeek 1996). Let �y, �π, and �Z

denote the N × 1 vector of yi’s, πi’s, and Zi’s, and Π the N ×N matrix of πij’s.
Define� and� as elementwise multiplication and division, respectively (the Hadamard

product). The symbols 1 and I denote an N × 1 vector of ones and the N × N identity
matrix, respectively.

To demonstrate vector notation, some population parameters are written in vector no-
tation as follows. The mean is y = 1

N 1′�y and the variance is σ2 = 1
(N−1) �y′ (I− 1

N 11′) �y.
We review the Horvitz-Thompson (HT) theorem here and present two corollaries:

Theorem 1. (Horvitz-Thompson) If unit i ∈ U is selected with probability πi, where

πi > 0 for all i ∈ U , then for any fixed N × 1 vector λ, λ′
(
�y � �Z � �π

)
is unbiased for

λ′�y.

Proof: See Horvitz and Thompson (1952). �
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Corollary 1. Let the N×1 vector �z be a second response onU . Denote Z̆ = �Z �Z ′�Π.

If πij > 0 for all (i, j) ∈ U × U , then for any fixed N ×N matrix A,

E
[
�y′ (A� Z̆

)
�z
]

= �y′A�z

.

Proof: �Z is the only random element in the expectation and E
[
�Z �Z ′

]
= Π (Särndal

et al. 1992). Quadratics result by taking �z = �y. �

Corollary 2. Let zij be a response defined on U×U . If πij > 0 for all (i, j) ∈ U×U ,

then
∑∑

ij∈s zij/πij is unbiased for
∑∑

ij∈U×U zij

Proof: See Särndal et. al. (1992, p. 48): Consider the universe U × U , then the
inclusion probabilities for “elements” will be the πij and the HT theorem applies. This
approach to quadratic estimation is known as the batch approach in Liu and Thompson
(1983). �
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